Consultants on Alternative Energy

Sabtu, 05 Maret 2011 · 0 komentar

The alternative energy consultants tell us that the transition from the petroleum-driven economy and society will not be a smooth one, on the whole. The amount of new technologies and infrastructures

Consultants on Alternative Energy Renewable Fuels

· 0 komentar

The Germans have really taken off when it comes to renewable fuel sources, and have become one of the major players in the alternative energy game. Under the aegis of the nation's electricity feed laws,

Jobs Consultants on Alternative Energy

· 0 komentar

It is possible to have a portfolio which profitably (that's the key word, is it not?) invests in alternative energy funds. “Green” energy production is expected to be a multi-billion (in today's dollars) industry

Biofuels as Alternative Sources of Energy

Rabu, 02 Maret 2011 · 0 komentar

Biofuels are produced by converting organic matter into fuel for powering our society. These biofuels are an alternative energy source to the fossil fuels that we currently depend upon. The biofuels

Alternative Energy Development in Japan

Rabu, 23 Februari 2011 · 0 komentar

Japan is a densely populated country, and that makes the Japanese market more difficult compared with other markets. If we utilize the possibilities of near-shore installations or even offshore installations in the future, that will give us the possibility of continued use of wind energy. If we go offshore, it's more expensive because the construction of foundations is expensive. But often the wind is stronger offshore, and that can offset the higher costs. We're getting more and more competitive with our equipment. The price—if you measure it per kilowatt-hour produced—is going lower, due to the fact that turbines are getting more efficient. So we're creating increased interest in wind energy. If you compare it to other renewable energy sources, wind is by far the most competitive today. If we're able to utilize sites close to the sea or at sea with good wind machines, then the price per kilowatt-hour is competitive against other sources of energy, go the words of Svend Sigaard, who happens to be president and CEO of the world's largest wind turbine maker, Vestas wind systems out of Denmark. Vestas is heavily involved in investments of capital into helping Japan expand its wind turbine power generating capacity. It is seeking to get offshore installations put into place in a nation that it says is ready for the fruits of investment into alternative energy research and development.

The Japanese know that they cannot become subservient to the energy supply dictates of foreign nations—World War II taught them that, as the US decimated their oil supply lines and crippled their military machine. They need to produce energy of their own, and they being an isolated island nation with few natural resources that are conducive to energy production as it is defined now are very open to foreign investment and foreign development as well as the prospect of technological innovation that can make them independent. Allowing corporations such as Vestas to get the nation running on more wind-produced energy is a step in the right direction for the Japanese people.

The production of energy through what is known as microhydoelectric power plants has also been catching on in Japan. Japan has a myriad rivers and mountain streams, and these are ideally suited places for the putting up of microhydroelectric power plants, which are defined by the New Energy and Industrial Technology Development Organization as power plants run by water which have a maximum output of 100 kilowatts or less. By comparison, “minihydroelectric” power plants can put out up to 1000 kilowatts of electrical energy.

In Japan, the small-scaled mini- and micro-hydroelectric power plants have been regarded for a considerable time as being suitable for creating electricity in mountainous regions, but they have through refinement come to be regarded as excellent for Japanese cities as well. Kawasaki City Waterworks, Japan Natural Energy Company, and Tokyo Electric Power Company have all been involved in the development of small-scale hydroelectric power plants within Japanese cities.

Energy Alternative: Free Energy

Sabtu, 19 Februari 2011 · 0 komentar

There has been much debate about what is often called “free” energy—energy that can supposedly, with the right technology, be drawn straight out of the atmosphere, and in very abundant supply. The debates are about whether the stuff actually exists or not, what it would actually cost were it to be harnessed, and if it does exist is it truly as abundant and efficient as it's being made out to be by proponents of research and development into this potential alternative energy source.
When one hears the phrase “free energy device”, one might be hearing about one of several different concepts. This might mean a device for collecting and transmitting energy from some source that orthodox science does not recognize; a device which collects energy at absolutely no cost; or an example of the legendary perpetual motion machine. Needless to say, a perpetual motion machine—a machine which drives itself, forever, once turned on, therefore needing no energy input ever again and never running out of energy—is impossible. However, it is not so simple to say that a new technology for harnessing the energy “floating” in the atmosphere is impossible. New technologies replace old ones all the time with abilities that had just been “impossible”. Harnessing the power of the atom for providing huge amounts of energy was “impossible” until the 1940s. Flying human beings were an “impossible” thing until the turn of the 20th century and the Wright Brothers' flight.

The biggest claim of the proponents of “free” energy is that enormous amounts of energy can be drawn from the Zero Point Field. This is a quantum mechanical state of matter for a defined system which is attained when the system is at the lowest possible energy state that it can be in. This is called the “ground state” of the system. Zero Point Energy (ZPE) is sometimes referred to as “residual” energy and it was first proposed to be usable as an alternative form of energy way back in 1913 by Otto Stern and Albert Einstein. It is also referred to as “vacuum energy” in studies of quantum mechanics, and it is supposed to represent the energy of totally empty space. This energy field within the vacuum has been likened to the froth at the base of a waterfall by one of the principal researchers into and proponents of Hal Puthof. Puthof also explains, the term 'zero-point' simply means that if the universe were cooled down to absolute zero where all thermal agitation effects would be frozen out, this energy would still remain. What is not as well known, however, even among practicing physicists, are all the implications that derive from this known aspect o quantum physics. However, there are a group of physicists—myself and colleagues at several research labs and universities—who are examining the details, we ask such questions as whether it might be possible to 'mine' this reservoir of energy for use as an alternative energy source, or whether this background energy field might be responsible for inertia and gravity. These questions are of interest because it is known that this energy can be manipulated, and therefore there is the possibility that the control of this energy, and possibly inertia and gravity, might yield to engineering solutions. Some progress has been made in a subcategory of this field (cavity quantum electrodynamics) with regard to controlling the emission rates of excited atoms and molecules, of interest in laser research and elsewhere.

Alternative Energy Education Method

Selasa, 15 Februari 2011 · 0 komentar

The best method of educating young people about alternative energy production that this writer has ever witnessed is the use of the PicoTurbine Company's kits, books, and projects. The PicoTurbine Company produces these things for the purpose of advancing the cause of renewable (alternative) energy and getting young people to look into the future and see that the environment that's being seeded now is the one they will inherit then. As the late, great Gerry Ford said, “Things are more like they are now than they have ever been before.” If we are to change the future world for the better, then it starts right here and now with the advent of “green” energy systems.

One of the core concepts of PicoTurbine can be stated: Tell me, and I will forget. Show me, and I might remember some of it. Involve me, and I will master it. Based on this old tried and true adage, the kits that the company produces come with activity suggestions to get the young people into hands-on learning situations. One suggestion of the company is to demonstrate how heat can be produced by wind energy (the company's specialty) through using a “picture wire” for the heating element. PicoTurbine has found that people typically think of wind energy as being “cold” energy, and are pleasantly surprised to see how wind can be used for generating heat in the home. Another project suggestion that the company offers is to have different groups split off in the classroom and then compare their respective wind turbines that they have built. They can see which ones produce the most or least electricity; which ones start up with need of the least amount of wind power; and for very young children, which ones have the most aesthetic appeal.

There is a core curriculum that PicoTurbine has in mind for teachers to instill in their pupils. Renewable, alternative sources of energy include solar, hydroelectric, geothermal, and biomass in addition to wind-produced energy. When we use more alternative sources of energy, we decrease our nation's dependence on foreign oil supplies, which often come from nations who cannot really be called our “allies”. Alternative energy is already becoming cost effective when set against the fossil fuels that we are so reliant on currently.

PicoTurbine points out that wind farms and solar arrays are already letting their makers enjoy commercial success. In the last two decades, the cost of photovoltaic cells expressed in terms of per-watt has gone from nearly $1000 to just $4! It has been predicted by analysts that by the year 2015, the cost per watt should only be about $1 (in today's dollars). Students also need to be taught about the hidden cost of fossil fuels: pollution and environmental degradation. Air pollution from burning fossil fuels has been shown through studies to increase incidences of asthma attacks, heighten the effects of allergies, and even cause cancer. Switching over to clean, green energy found in the alternative forms would prevent air pollution and help bolster the environment.

Alternative Energy in Ireland

Sabtu, 12 Februari 2011 · 0 komentar

The Irish are currently pursuing energy independence and the further development of their robust economy through the implementation of research and development into alternative energy sources. At the time of this writing, nearly 90% of Ireland's energy needs are met through importation—the highest level of foreign product dependence in the nation's entire history. This is a very precarious situation to be in, and the need for developing alternative energy sources in Ireland is sharply perceived. Ireland also seeks to conserve and rejuvenate its naturally beautiful environment and to clean up its atmosphere through the implementation of alternative energy supplies. The European Union has mandated a reduction in sulphuric and nitric oxide emissions for all member nations. Green energy is needed to meet these objectives. Hydroelectric power has been utilized in Ireland in some areas since the 1930s and has been very effective; however, more of it needs to be installed. Ireland also needs to harness the wave power of the Atlantic Ocean, which on its west coast is a potential energy supply that the nation has in great store.

Ireland actually has the potential to become an energy exporter, rather than a nation so heavily dependent on energy importation. This energy potential resides in Ireland's substantial wind, ocean wave, and biomass-producing alternative energy potentials. Ireland could become a supplier of ocean wave-produced electricity and biomass-fueled energy to continental Europe and, as they say, “make a killing”. At the present time, Ireland is most closely focused on reaching the point where it can produce 15% of the nation's electricity through wind farms, which the government has set as a national objective to be reached by 2010. But universities, research institutes, and government personnel in Ireland have been saying that the development of ocean wave energy technology would be a true driving force for the nation's economy and one which would greatly help to make Ireland energy independent. A test site for developing wave ocean energy has been established in Ireland, less than two miles off the coast of An Spideal in County Galway Bay. This experimental ocean wave harnessing site is known as “Wavebob”. The most energetic waves in the world are located off the West coast of Ireland, says Ireland's Marine Institute CEO Dr. Peter Heffernan. The technology to harness the power of the ocean is only just emerging and Ireland has the chance to become a market leader in this sector. David Taylor, CEO of the Sustainable Energy Initiative,or SEI, tells us that SEI is committed to innovation in the renewable energy sector. Wave energy is a promising new renewable energy resource which could one day make a significant contribution to Ireland's electricity generation mix thereby further reducing our reliance on fossil fuels.

Padraig Walshe, the president of the Irish Farmers Association, tells us that with the closure of the sugar beet industry, an increasing amount of Irish land resources will become available for alternative uses, including bioenergy production. Today, renewable energy sources meet only 2% of Ireland’s total energy consumption. From a farming perspective, growing energy crops will only have a viable future if they provide an economic return on investment and labour, and if the prospect of this return is secure into the future. Currently the return from energy crops is marginal and is hampering the development of the industry. Biomass energies need to be further researched by Ireland.

Alternative Energy from the Ocean

· 0 komentar

Ocean Thermal Energy Conversion (OTEC) was conceived of by the French engineer Jacques D'Arsonval in 1881. However, at the time of this writing the Natural Energy Laboratory of Hawaii is home to the only operating experimental OTEC plant on the face of the earth. OTEC is a potential alternative energy source that needs to be funded and explored much more than it presently is. The great hurdle to get over with OTEC implementation on a wide and practically useful level is cost. It is difficult to get the costs down to a reasonable level because of the processes presently utilized to drive OTEC. Ocean thermal energy would be very clean burning and not add pollutants into the air. However, as it presently would need to be set up with our current technologies, OTEC plants would have the capacity for disrupting and perhaps damaging the local environment.

There are three kinds of OTEC.
“Closed Cycle OTEC” uses a low-boiling point liquid such as, for example, propane to act as an intermediate fluid. The OTEC plant pumps the warm sea water into the reaction chamber and boils the intermediate fluid. This results in the intermediate fluid's vapor pushing the turbine of the engine, which thus generates electricity. The vapor is then cooled down by putting in cold sea water.

“Open Cycle OTEC” is not that different from closed cycling, except in the Open Cycle there is no intermediate fluid. The sea water itself is the driver of the turbine engine in this OTEC format. Warm sea water found on the surface of the ocean is turned into a low-pressure vapor under the constraint of a vacuum. The low-pressure vapor is released in a focused area and it has the power to drive the turbine. To cool down the vapor and create desalinated water for human consumption, the deeper ocean's cold waters are added to the vapor after it has generated sufficient electricity.
“Hybrid Cycle OTEC” is really just a theory for the time being. It seeks to describe the way that we could make maximum usage of the thermal energy of the ocean's waters. There are actually two sub-theories to the theory of Hybrid Cycling. The first involves using a closed cycling to generate electricity. This electricity is in turn used to create the vacuum environment needed for open cycling. The second component is the integration of two open cyclings such that twice the amount of desalinated, potable water is created that with just one open cycle.

In addition to being used for producing electricity, a closed cycle OTEC plant can be utilized for treating chemicals. OTEC plants, both open cycling and close cycling kinds, are also able to be utilized for pumping up cold deep sea water which can then be used for refrigeration and air conditioning. Furthermore, during the moderation period when the sea water is surrounding the plant, the enclosed are can be used for mariculture and aquaculture projects such as fish farming. There is clearly quite an array of products and services that we could derive from this alternative energy source.

Alternative Energy for the Home

Jumat, 04 Februari 2011 · 0 komentar

The trend toward homes that are powered by alternative energy sources, ranging from wind turbines and solar collection cells to hydrogen fuel cells and biomass gases, is one that needs to continue into the 21st century and beyond. We have great need of becoming more energy independent, and not having to rely on the supplying of fossil fuels from unstable nations who are often hostile to us and our interests. But even beyond this factor, we as individuals need to get “off the grid” and also stop having to be so reliant on government-lobbying giant oil corporations who, while they are not really involved in any covert conspiracy, nevertheless have a stranglehold on people when it comes to heating their homes (and if not through oil, then heat usually supplied by grid-driven electricity, another stranglehold).

As Remi Wilkinson, Senior Analyst with Carbon Free, puts it, inevitably, the growth of distributed generation will lead to the restructuring of the retail electricity market and the generation, transmission and distribution infrastructure. The power providers may have to diversify their business to make up for revenues lost through household energy microgeneration. She is referring to the conclusions by a group of UK analysts, herself included among them, who call themselves Carbon Free. Carbon Free has been studying the ever-growing trend toward alternative energy-using homes in England and the West. This trend is being driven by ever-more government recommendation and sometimes backing of alternative energy research and development, the rising cost of oil and other fossil fuels, concern about environmental degradation, and desires to be energy independent. Carbon Free concludes that, assuming traditional energy prices remain at their current level or rise, microgeneration (meeting all of one's home's energy needs by installing alternative energy technology such as solar panels or wind turbines) will become to home energy supply what the Internet became to home communications and data gathering, and eventually this will have deep effects on the businesses of the existing energy supply companies.

Carbon Free's analyses also show that energy companies themselves have jumped in on the game and seek to leverage microgeneration to their own advantage for opening up new markets for themselves. Carbon Free cites the example of electricity companies (in the UK) reporting that they are seriously researching and developing ideas for new geothermal energy facilities, as these companies see geothermal energy production as a highly profitable wave of the future. Another conclusion of Carbon Free is that solar energy hot water heating technology is an efficient technology for reducing home water heating costs in the long run, although it is initially quite expensive to install. However, solar power is not yet cost-effective for corporations, as they require too much in the way of specialized plumbing to implement solar energy hot water heating. Lastly, Carbon Free tells us that installing wind turbines is an efficient way of reducing home electricity costs, while also being more independent. However, again this is initially a very expensive thing to have installed, and companies would do well to begin slashing their prices on these devices or they could find themselves losing market share.

The best luxury body kits

Selasa, 25 Januari 2011 · 0 komentar

car is one of the techniques to make ourselves become precious in the eyes of others. Maybe you want to raise your prestige in the eyes of others with the vehicle you have. However, apart from it makes the car interesting and it’s because you always want to get comfortable. For you who want to get comfortable, you can use the best car accessories and quality. One of the accessories that you can use is the body kits.You can see more about Civic body kits At that time, you will immediately get an order to pay for it. If you have a credit card, you can pay directly without a hitch. bodykits include front and rear bumpers, side skirts, spoilers, and side guards. They are fitted externally and so can modify the looks of a vehicle. They are available in a number of designs and styles. They do not cost much and it is not difficult to install them. Even then care has to be taken to see that they are correctly installed. It will be better if a professional person is engaged for the job.

Iks Free to Air Satellite

Minggu, 02 Januari 2011 · 0 komentar

FTA Keys in the Past

To explain, we need to go back in time before IKS. In the past, when you bought a satellite receiver, it needed to have ‘codes' imputed into it in order to be able to receive and display certain channels. To do this, one usually brought the receiver to a dealer who would then start the arduous task of ‘programming' the hardware. This could take from a few minutes to a few hours.

As technology increased, and home tech became more prevalent, new methods of imputing FTA Keys were invented. For the most part, if an FTA receiver owner could find the codes or keys necessary, they could input these codes manually using a variety of front panel button selections. This too was quite tricky, and many people still took their receivers to authorized dealers for the upgrades.

Over time, satellite receiver companies made it easier to enter FTA Keys. Multifunction remote controls, advanced LED displays and more automata in the receiver's firmware made updating codes about as difficult as programming a VCR or DVD player. At this point, FTA (free to air) television started to rise in popularity. Some receivers were no long "set top" receivers, but actual PCI cards (DVB PCI) where FTA Keys could be entered via your PC (with the keyboard) which would automate the entire process and have your TV up and running almost instantly.

One of the biggest reasons IKS technology has become so popular is a) internet speeds in the common household have multiplied exponentially and b) many people use IKs technology to decode ‘Pay TV' channels.

The advent of IKS is comparable to card sharing. In this sense it is very important to keep in mind that are legal and illegal uses of IKS technology. If you are suing IKS to download a decoder word for PayTV or Pay subscription channels, you may be breaking the law. IKS can be used to legally decode thousands of international channels which is especially useful if you work out of country or have recently moved away from your country. The BBC and CBC are examples of free to air channels that can be picked up abroad.



free counters


About this blog

Site Sponsors